The next big quantum leap may require better software

blackdovfx/Getty Images

The raw power of increasingly advanced quantum computers could necessitate advances in software to make sense of the noise.

Quantum computers certainly seem like strange devices. For humans used to living in a world driven by Newtonian physics, having a device dip into the world of quantum physics—where the rules are different and sometimes even counterintuitive—can seem inexplicable. And when those same devices actually solve complex problems and provide answers, it almost begins to border on magic. 

Not too many years ago, there were still scientists who thought that quantum computing was a hoax. Quantum machines are built to run deep inside black boxes and must operate in a totally dark vacuum at temperatures close to absolute zero. So you can’t watch them as they work. They have to be designed that way, because their computing power is tied to putting atoms or electrons into a state called superposition, which is incredibly fragile. Almost anything can strip away that property and imprison atoms back into their normal, single state of being that makes up our Newtonian-physics based reality. Beams of light, heat, soundwaves, slight vibrations, air molecules or even radiation can devastate superposition in a process called decoherence.

These days, very few people doubt the existence of quantum computers. In 2019, Google, in partnership with NASA, achieved quantum supremacy by designing a quantum machine that could solve a problem that would have taken a traditional supercomputer thousands of years. That milestone puts the United States well ahead of other countries in the race to create powerful, and more useful, quantum computers.

In this country, most work on quantum computers is being undertaken by private companies and universities with heavy backing from the government. That is in contrast to most other rival nations like China and Russia, which are investing billions directly into government labs. Our approach seems to be working better. A recent report commissioned by the Department of Defense and conducted by the RAND Corporation shows that the United States leads the world in most key areas of quantum computing.

Most of the developments made so far in the quantum computing world have been because of improvements in hardware. Quantum computers use qubits, which are kind of like binary bits in traditional digital computers. They are powerful because a quantum device is designed to let the qubit—which can be something like a polarized photon or the spin of an electron—exist in multiple states at the same time. Instead of a digital computer’s bit that represents either a one or a zero, qubits can be both at the same time, plus everything in between. And having more qubits has so far equated to more computing power.

The Google quantum computer that achieved supremacy had 53 qubits. IBM recently announced a quantum computer with 127 qubits that is thought to be the largest in the world, although D-Wave is working on a new machine with thousands of qubits. There is some discrepancy about the numbers because of the vastly different ways companies can create qubits, but basically, more qubits means more power.

Software fixing hardware

However, while adding more qubits certainly gives more power, it does not make up for the inherent problems associated with quantum computers, with one of the biggest being that they are very prone to errors. Or, more accurately, they are difficult to understand and program so that errors don’t occur within their output. All quantum computers generate “noise” to some extent. They may return a correct answer to a question, but they will also send back a lot of useless junk, with the actual solution mixed in with it. Then it becomes a matter of trying to separate a needle from a haystack, or even a needle from a stack of other needles. Because of that, adding more qubits may not help the situation.

It's been suggested that artificial intelligence running on traditional computers could be employed to analyze the answers returned by quantum machines. That might make it easier to eliminate the noise more quickly than trying to do it by hand, but does not address the fundamental problem of inaccurate answers coming from quantum machines.

Instead of adding more qubits, the solution to this predicament might actually be software-based, letting programmers ask better questions so that noise is reduced or eliminated from the start. One of the reasons for all the errors is that the qubits can become entangled. This is a state where even if two qubits are physically separated, the actions of one can change the other. Albert Einstein amusingly described that property as “spooky action at a distance.” In practical terms, if you are accepting data generated from one qubit, but don’t know that it’s entangled with another, then there is a good chance that the data is being corrupted, but you may not know it.

Right now, scientists basically need to guess at how qubits are entangled and try to act accordingly. So it’s like trying to write a program to run on a machine where the rules are not completely known, and may change. Hence, a lot of noise gets returned with the results, regardless of the size of the quantum machine. And bigger machines could make the problem worse.

To try and compensate, scientists and researchers at The Massachusetts Institute of Technology recently unveiled a new programming language called Twist at the 2022 Symposium on Principles of Programming conference in Philadelphia. Right now, there is nothing quite like Twist. Most quantum computer programmers use assembly languages, or something like them, where they have to string a bunch of processes together without the benefit of much orchestration. They have to guess at the entanglements based on their observations of the data being generated.

Twist is designed to help scientists discover which qubits in their machines become entangled when working on a problem, and then take specific actions, like only accepting data from an unentangled qubit. The language of Twist mirrors other common programming languages and is designed to be easy for skilled coders to pick up.

“Our language Twist allows a developer to write safer quantum programs by explicitly stating when a qubit must not be entangled with another,” said MIT PhD Student Charles Yuan in MIT News. “Because understanding quantum programs requires understanding entanglement, we hope that Twist paves the way to languages that make the unique challenges of quantum computing more accessible to programmers.”  

In the same MIT News article about the new language, Fred Chong, the Seymour Goodman Professor of Computer Science at the University of Chicago, talked about why Twist and other software developments may be just as important in the long run as putting more and more qubits into play. 

“Quantum computers are error-prone and difficult to program. By introducing and reasoning about the purity of program code, Twist takes a big step towards making quantum programming easier by guaranteeing that the quantum bits in a pure piece of code cannot be altered by bits not in that code,” Chong explained.

As the hardware side of quantum computers continues to evolve, better software may be needed to help focus all of that raw power and potential. Twist may eventually seem like a small step towards that goal, but it’s undoubtedly a critically important one.

John Breeden II is an award-winning journalist and reviewer with over 20 years of experience covering technology. He is the CEO of the Tech Writers Bureau, a group that creates technological thought leadership content for organizations of all sizes. Twitter: @LabGuys

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.